Oxidative stress is an early event in hydrostatic pressure induced retinal ganglion cell damage.
نویسندگان
چکیده
PURPOSE To determine whether oxidative adduct formation or heme oxygenase-1 (HO-1) expression are altered in retinal ganglion cell (RGC) cultures exposed to elevated hydrostatic pressure and in a mouse model of glaucoma. METHODS Cultured RGC-5 cells were subjected to 0, 30, 60, or 100 mm Hg hydrostatic pressure for 2 hours, and the cells were harvested. Parallel experiments examined the recovery from this stress, the effect of direct 4-hydroxy-2-nonenal (HNE) treatment, and the effect of pretreatment with resveratrol or quercetin. Mice were anesthetized and intraocular pressure was increased to 30, 60, or 100 mm Hg for 1 hour; then the retinas were harvested. HNE adduct formation and HO-1 expression were assessed by immunocytochemistry and immunoblotting. RESULTS Increases of HNE-protein adducts (up to 5-fold) and HO-1 expression (up to 2.5 fold) in pressure-treated RGC-5 cells were dose dependent. During recovery experiments, HNE-protein adducts continued to increase for up to 10 hours; in contrast, HO-1 expression decreased immediately. HNE, at a concentration as low as 5 muM, led to neurotoxicity in RGC-5 cells. HNE adducts and HO-1 expression increased in the mouse retina and optic nerve after acute IOP elevation up to 5.5-fold and 2-fold, respectively. Antioxidant treatment reduced the oxidative stress level in pressure-treated RGC-5 cells. CONCLUSIONS This study demonstrates that oxidative stress is an early event in hydrostatic pressure/IOP-induced neuronal damage. These findings support the view that oxidative damage contributes early to glaucomatous optic neuropathy.
منابع مشابه
Stem Cells in Glaucoma Management
Glaucoma is the leading cause of preventable blindness worldwide. Despite tremendous advances in medical and surgical management of glaucoma in the recent years, the prevalence of glaucoma related blindness is anticipated to increase in the future decades because of the aging population. Stem cells have the potential to change the glaucoma management in several ways. There are several areas of ...
متن کاملHydrogen Sulfide Protects Retinal Ganglion Cells Against Glaucomatous Injury In Vitro and In Vivo.
Purpose Hydrogen sulfide (H2S) is recognized as a novel third signaling molecule and gaseous neurotransmitter. Recently, cell protective properties within the central nervous and cardiovascular system have been proposed. Our purpose was to analyze the expression and neuroprotective effects of H2S in experimental models of glaucoma. Methods Elevated IOP was induced in Sprague-Dawley rats by me...
متن کاملElevated pressure triggers a physiological release of ATP from the retina: Possible role for pannexin hemichannels.
Increased hydrostatic pressure can damage neurons, although the mechanisms linking pressure to neurochemical imbalance or cell injury are not fully established. Throughout the body, mechanical perturbations such as shear stress, cell stretching, or changes in pressure can lead to excessive release of ATP. It is thus possible that increased pressure across neural tissues triggers an elevated rel...
متن کاملNaringin attenuates diabetic retinopathy by inhibiting inflammation, oxidative stress and NF-κB activation in vivo and in vitro
Objective(s): Naringin, an essential flavonoid, inhibits inflammatory response and oxidative stress in diabetes. However, whether naringin has beneficial effects on diabetic retinopathy (DR) remains unknown. Materials and Methods: Streptozotocin (STZ, 65 mg/kg) was intraperitoneally injected into male rats (8 weeks old weighting 200-250 g) to establish diabetic model, then naringin (20, 40 or 8...
متن کاملOxidative stress induces autophagy in response to multiple noxious stimuli in retinal ganglion cells
Retinal ganglion cells (RGCs) are the only afferent neurons that can transmit visual information to the brain. The death of RGCs occurs in the early stages of glaucoma, diabetic retinopathy, and many other retinal diseases. Autophagy is a highly conserved lysosomal pathway, which is crucial for maintaining cellular homeostasis and cell survival under stressful conditions. Research has establish...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 48 10 شماره
صفحات -
تاریخ انتشار 2007